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| Abstract
3

Programs written using step-wise refinement are meant to be Gah-
derstood at levels of an hierarchy, but only a complete progranm
can be executed. This paper considers the debugging of such pro-
grams in the manner they are written: top-down, each level not
depending on execution of the levels below. Step-wise debugging
also applies to the testing of multiple-process systems, and to
the integration testing of any software. It allows the debugging
of incomplete software, and when all modules are available, it
structures debugging to follow the conceptual organization of the

software.
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_autonomous programs (processes) instead of subroutines, communicating by

1. Decomposition of Programs . . -

*Divide and conquer” is acknowledged to be the best strategy for combating the
immense complexity of computer programs. In its least structured form, this
philosophy involves dividing a program into "modules,” each S0 small that it
can be understood easily. Unfortunately, a bad division can be
counterproductive in that the data interfaces between modules are so broad,
and the control connections so chaotic, that understanding of the whole does
not come from understanding of the parts. Two methods are in common use to
structure decomposition: hierarchical step-wise refinement, and cooperation
of autonomous processes. Each of these is an imprecise programming method
whose spirit is not necessarily captured by the letter of its syntactic laws.

Step-wise refinement {1] is usually applied to single, sequential
programs; then the modules are conventional procedures. The call graph of
dependencies among modules has well -defined levels of limited complexity.
(The procedures are short and do not call too many others; the call graph has
limited breadth, Recursion--cycles in the graph--is usually thought to be )
beneficial.) The idea is that to understand a node of the graph requires only
understanding of its immediate descendent nodes, and understanding the root
node is mastery of the whole. The decomposition is logarithmic in that to
handle an N-module system requires dealing with only about 1log N modules at
a time.

The other major method for controlling decomposition uses units that are

passing messages to each other [2]. The analogy of the call graph is a graph
whose nodes are processes and whose arcs are message-interchange connections.
Compared to the case of subroutine modules, the nodes are more complex, but
the connections simpler. 1In the extreme case represented by UNIX pipes [3]
the graph is a chain, and the nodes may be sophisticated programs. It is more
usual to allow slightly more complex communication, and to restrict the
complexity of each process. The idea is that each process can be understood
alone, and the behavior of the whole is obvious given that of the parts.
Because communication is asynchronous and each process complex, the
interconnections must be very simple to realize this goal. Ideally,
understanding an N-module system requires only dealing with a fixed number K
(K << N) of modules at a time.

During development of a system using one of these methods, each of the
units can be assigned to a separate designer or programmer, who need be given
only information about immediately connected units. Since this information is
necessarily less precise than actual design or code for the other units, it is
difficult to debug units in isolation. The most common schemes are to wait
for all units to be completed, and test them in a bottom-up fashion so that
all commmications are supplied as they will actually be in the complete
system, or to test top-down using stubs that do not behave much like the
missing modules, but merely (say) print messages announcing that they have
been called. This paper considers how to do a better job of top-down
dedbugging. The essence of the idea is iteration through the decomposition
links: the information that should have been supplied by missing modules is
given at random in stage 0, creating outputs that are used as inputs in stage
1, and 30 on until the process converges (if it does) to a useful test.

Step-wise debugging requires the support of a bookkeeping tool, because
for a large system the volume of data and its proper labeling is difficult for
a person to handle. In some cases it is useful for a human user to monitor
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details of the debugging process; more often it is desirable that all its
details be hidden, for which machine assistance is essential.

2. Step-wise Debugging of Hierarchically Organized Subroutines

There is good reason to deal with a system 6ne module at a time even when all
modules are available. In a complex, just-completed system, bugs are likely
to lurk everywhere, and letting the modules invoke each other as if the syatem
were working is a waste of time: the results are too chaotic to understand.
Step-wise debugging can use an incomplete set of modules; it is easiest to
describe the method for the case in which all modules are available. (The
more complex case of cooperating processes is treated in Section 3.)

Suppose then that a complete collection of modules is available, to be
debugged one at a time. The first may be handled as in a conventional top-down
integration test (4], with the results from other modules supplied by random
selection. When the test is complete it yields a collection of inputs sent to i
other modules, and one input-output pair for the test module. As each i
additional module is tested, inputs given to other modules accumulate, and
input-output pairs. By working from the list of inputs so generated, and
using already-available pairs when possible, the reliance on randomly
generated results can be decreased. A series of debugging stages can be
identified for each input to the entire system. At stage 0 each module is
tested in isolation, using randomly generated values for all intermodule
communications, except where a result has already been obtained at stage 0.

At stage 1, each input for another module whose result was needed in stage O
is investigated. The necessary routine is tested with this input, using
input-output pairs from stage 0 (or, in preference, stage 1) where possible,
otherwise random generation of results. As each value is obtained at stage 1,
any previous calculations that could use it are repeated, perhaps adding to *
the list of needed results. Continuing in this way, at stage N there is a
1ist of inputs for various modules whose results were needed but unavailable
at stage N-1. These are used as tests, utilizing the most recent results
where possible, and the outcomes substituted in the most recent earlier
computations, resulting perhaps in further corrective substitutions, and
creating the needed list for stage N+1.

The step-wise debugging process can be carried out without human
intervention except to supply a system input and to select the "top" module
for test. Since the results depend on the order in which modules are
considered, the call graph can be used to completely describe the system
structure. For a collection of modules without recursion, the process
necessarily terminates, because the call graph has no cycles, and hence some
modules do not depend on others., Their results in turn fix the results from
modules higher in the graph, and a stage exists in which only information from
actual executions is being used, so that no new input list is generated. At
the termination stage, the execution is indistinguishable from a conventional
bottom-up integration test of the software. But debugging is directed from
the top, which shows itself in the tests applied at lower levels. (Very
similar remarks could be made about top-down development: when it is
complete, the design can be viewed bottom-up, but it could not have been
constructed that way.)

Step-wise debugging can be used on a partial system if information is
available about the missing modules. The interface parameters must be
strongly typed (the more restrictions the better) and marked as inputs or
outputs. (This sllows random selection of results from an appropriate range.)
An informal specification must be available. (It is used to check that
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supplied results are reasonsble.) The debugging process then terminates at
stage 1 unless there is recursion.

When there is recursion the calls can be allowed to invoke- the code
instead of being stopped at each stage. (Allowing recursions to occur can be
compared to allowing loops within the code to proceed without interference.
For cooperating processes, loops themselves must be controlled, as described
in Section 3.) The recursion may terminate, and the debugging will then also
end. If the human user is impatient, the specification may be used to supply a
value at stage N; if the corresponding input is not added to the list for
stage N+1, debugging will terminate. Both techniques can also be used when
all modules are available: allowing code to be used instead of enforcing the
stage boundaries corresponds to introducing a measure of bottom-up testing:
supplying values that are close to correct can speed up convergence. (If
values supplied at stage N disagree with the actual computations, it will show
up at stage N+1.)

3. Step-wise Debugging of Cooperating Sequential Processes

A module-connection graph with process nodes, and arcs indicating message
interchange, does not capture the cooperation of processes as it usually
occurs in so-called real-time systems. In such systems each process is cyelic
(perhaps implemented using a never-ending loop) with its body devoted to
interacting with other processes and performing calculations based on those
interactions. The process "output" is the messages it sends to other
processes, and its "input®" is received from them. The external world can be
thought of as another process interacting with the computer system. (This
view is due to Fitzwater [5] and has been used as the basis of a specification
language {6].) Processes of this kind are not functional in the sense of
transforming inputs to outputs, but they can be debugged in the step-wise
manner described in Section 2 if the unending loop is interrupted at each
debugging stage. (The loop introduces "recursion" into the interconnection
graph which might be imagined as each process reinvoking itself as soon as its
body is completed.)

Another important feature of cooperation among processes is the
synchronization of communication, which can be incorporated in message passing
by allowing a process to test for a waiting incoming message. Such a test can
be handled as an interchange with the sending process whose values come from a
{wait, nowait} set. Communication occurs as follows: (1) processes
communicate by name; (2) process output is immediate: (3) process input waits
for the corresponding output; (4) a process may test for input waiting. To
combine processes so that their messages could be exchanged during actual
execution (at later stages of the debugging process), it is sufficient to have
a time stamp associated with each message and input-waiting test.

When all processes are available, step-wise debugging proceeds as follows.
At stage 0, each process body is executed in isolation, with incoming messages
randomly generated (but see below), and decisions about waiting input treated
as two-valued random choices. Each message and choice is stamped with the
execution time of the process at which it occurs. To determine if any
previously obtained stage-0 outputs can serve as inputs in place of randomly
gonerated ones (and similarly when later stages use earlier results) requires
analysis of the message and test time stamps. If process S sends a message to
process R stamped t , it can be used for input at time u only if all of R's
input-waiting tests on S before t and before u have failed, and all those
after ¢ and before u have succeeded. Should such an output be used, as
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input it is time stamped the greater of t and u , reflecting the fact that
R had to wait for it. Should t be greater than u , execution time for R is
also updsted to t . At stage 1, the lists of input needed by each process
are considered. For each output message needed from process P, P-is executed
using stage-0 and stage 1 inputs where possible, until one is produced. (This

N may require more than one repetition of P's body, and indeed the necessary

B message may never be forthcoming, as discussed below.) When a message is
f . obtained, the calculation in which it is involved as input is repeated, .
including the necessary revisions in time stamps discussed above. This may
alter the list of needed messages. Continuing in this way, at stage N there
is a list of messages needed but not supplied by stage N-1, which are sought
using the most recent messages where possible, then substituted into the most
recent earlier computations. This may force yet earlier substitutions, and
crestes the message-needed list for stage N+1,

g e e i b

To illustrate debugging of cooperating processes, something like a Pascal
program will be used for each process, with the message-interchange
constructions:

send(link, message)
meaning that output of "message" is to occur to process "link": and,

receive(link, variable)

meaning that eieoution must wait for a message from process "link" which is
placed in "variable"; and,

' # ready(link)

a Boolean function that is true iff process "1link" has sent a message that the
executing process may now receive . The identifier EXTERNAL is a "link" .
naming the environment that is not part of the cooperating system, to which

these constructions may be applied for input-output.

Consider the following collection of processes, which is typical of simple
systems in which different routines handle different kinds of input in
parallel, but with some interaction. The system is intended to keep a check
1 on the number of input "0" and "1" characters, and to respond upon "=" with
¢ whether or not the prior counts were the same.

@ process Classify:
y var letterin: char;
begin
while true do
begin
receive(EXTERNAL, letterin):
case letterin of
'0': send(Zero, letterin):
1': send(One, letterin):
'-':
begin
send(One, letterin);
send(Zero, letterin)
end 4 .

end
end
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process Zero;
var Z: char;
Excess: integer:
begin
while true do
begin
receive(Classify, 2);
if Z s '=' then
begin
send(One, '+');
Excess := 0;
while Z O '+!' do
begin
receive(One, 2);
Excess :z= Excess + 1
end;
send(Advise, Excess)
end
elseif ready(One) then
receive(One, 2)
else
send(One,2)
end
m.

process One;
var Z: char;
Excess: integer;
begin
while true do
begin
receive(Classify, 2);
if Z = '=' then
begin
send(Zero, '+');
Excess := 0;
while Z O '+' do
begin
receive(Zero, 2);
Excess := Excess + 1
end;
send(Advise, Excess)

m —C [
elseif ready(Zero) then 8

receive(Zero, 2)

else Lo
send(Zero,2) TS

end

end. o
! L

procesas Advise; ]
var A, B: integer:
begin
while true do
begin
receive(One, B);
receive(Zero, A):

send (EXTERNAL, A = B)
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Applying the algorithm above to the input
0010-1 ) . -

at stage 0, we have:

time process message: from to value
Classify
3 Zero 0!
6 Zero '0f
9 One "
12 One 't
13 Zero 't
16 One e
Zero
2 Classify ' 012
4 One ready=true?
5 One o2
7 Classify 07
9 One ready=false?
10 One 'o!
12 Classify '-'?
15 One ‘e!
18 One '$'?
21 Advise 1
One
2 Classify 12
4 Zero ready=false?
5 Zero "t
7 Classify =12
9 Zero Te!
12 Zero '+'?
15 Advise 1
Advise
2 One 3?
3 Zero 8?2
y EXTERNAL false?

Time is measured in statement counts. The randomly generated values are
followed by a question mark (?), and are selected from the range of characters
that could be determined by static analysis, or from the integer interval
{0,9]. Several cycles of the processes Zero and One have been performed;
how far to go is determined by the needs of stage 1 (here for process Advise
).

The stage-0 approximation to this system's behavior is not very good, and
it should be considered an accident that the desired output results-it would
also appear for the input

01=-
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by the same¢ analysis., However, we inow that the process is not finished
because some messages were generated at random.

At stage 1 there are no messages needed by Classify. Process Zero
needs a message from Classify, which has appeared in stage 0 at time 3, so
the time within Zero is updated, but the randomly generated message value of
'0' stands. The stage-0 analysis of One shows that the ready query would be
false at time 4, so the last two stage-0 messages in Zero are replaced. A
similar analysis of the other routines gives the partial stage-! result:

time process message: from to value
Zero
3 Classify Q!
S One ready=false(0?]
6 One 0 .
One
9 Classify 1! .
1 Zero ready=true[07?]
12 Zero '+1107)
Advise
16 ’ One 1007]
22 Zero 1{0?]
23 EXTERNAL true

The "07?" following a message value indicates that a result for stage 0 has
been used that is itself based on a randomly generated message. Hence these
values will have to recalculated later.

Continuing in this way, the final result is:

time process message: from to value
Classify
3 Zero 0!
6 Zero 0!
9 One e
12 One 'at
13 Zero 't
16 One "
lZero
3 Classify 0
5 One readysfalse
6 One 0!
8 Classify ‘0
c One readyzfalse
One 0!
14 Classify Yt
16 One Yol

',’!

Advise 1

One




One
9 Classify LR
11 Zero ready=ztrue -
12 Zero . thk ’
14 Classify 't
16 Zero e!
19 Zero ) 0!
22 Zero fe!
24 Advise 2
26 Classify "
Advise
25 One 2
26 Zero 1
27 EXTERNAL false

(It might be useful to reproduce this table in response to the input, but it
is easier to understand if the process actions are intermingled on a single
time scale.)

ror this expository example, the result is the same as if the processes
had been allowed to "just run" under a reasonably fair scheduling algorithm,
and the resulting table is similar to that suggested in [7]. For more
complicated cases, however, the ordered consideration of one process at a time
distorts the scheduling decisions in favor of that process. Two useful
outcomes are that (1) since processes "get what they want," when they contain
simple errors, the repair may be easier; and (2) by altering the order in
which processes are considered, unusual scheduling patterns 'can be obtained,
without a user having to describe those patterns in detail. A buggy routine
may even be characterized by wrong output when it is placed at the top level
in stepwise debugging, but correct results when it is relegated to a
subordinate position.

External inputs may be generated at random, in units of the size messages
needed. This further emphasizes processes placed at the top level, since an
input process does not use its time sequence to order the scheduling (as
occurred in the saniple above). Then step-wise debugging may terminate even
though execution of the processes does not. That is, a stage may be reached
at which no new messages are needed. This means that a particular sequence of
interactions has been discovered that is time-consistent, and so represents a
possible actual execution of the system. The sequence obtained will depend on
the order in which modules are tried, which can reflect a hierarchical view of
the system on top of its process structure. A terminating debugging session
yields a system test in which each process body is executed an integral number
of times, and there are no missing inputs. Continuing to execute any process
may begin a new (possibly different) cycle.

When a process P should produce a message at stage N, it can fail, either
because the message cannot be produced, or because P has not itself been given
the proper messages to yield the needed result. In the former case the
debugging process cannot continue until P is repaired; in the latter case it
may be sufficient to abandon P at stage N, and add the needed message to stage
N+1, where better data may be available.

For a partial system, two-stage debugging requires that relative timing
information be supplied, as well as messages from the missing processes. This
puts a considerable burden on the specifications for those processes, but in a
language designed for partial specification the process can succeed, as

8
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described in (71.

4. Computer Support

The example of step-wise debugging given in Section 3 shows the need for
automatic bookkeeping to handle large collections of input—-output data, and to
keep track of the method's stages. When portions of the code are allowed to
"just run,™ and when results are artificially inserted for missing routines,
conventional debugging and test-harness tcols are appropriate. For example, a
concurrent-control language [8] would help monitor a process whose output was
needed.

A support implementation is straightforward. The techniques of self-
contained interpreter, preprocessor, or run-time library with compiler
modification are all applicable. For a conventional programming language like
Ada (and for most program design languages) the run-time library approach can
be easily added to a conventional debugging system with procedure-call
tracing. Since the trace routine gets control at each call, it can be
modified to generate values and record the needed-list. Instead of allowing
the program itself to execute, a phony main program is added that invokes the
instrumented procedure code, in accordance with the stages of the method.
Essentially the same techniques have been used for an automatic testing system
(91.

The case of cooperating processes will be described in more detail.
Consider a systems implementation language with operating-system support for
process control and message interchange. This is the approach used in C under
UNIX, and in many "quick and dirty" languages like SIMPL-XI [10]. These can
serve as object languages for the compilation of higher-level specification
and requirements source languages, S0 they represent the general case: minor
changes to the high-level compiler create a support system at that level. For
concreteness, assume that a system uses C with UNIX support. (That message-~
passing is very inefficient in current versions of UNIX will not disturbd
understanding.) In execution, systems appear to be a collection of stand-
alone programs, which can communicate through operating-system calls.

The debugging system gains control within each process by intercepting
operating-system service calls. For example, instead of processes calling
SIGNAL to use traps for communication, they call a new library routine
PRESIGNAL, which calls SIGNAL after appropriate bookkeeping has been done.
Then traps go to PRESIGNAL, which can keep track of the communication as
required. For debugging execution, control is not given to any of the
processes. Instead, a library process PREMAIN initially assumes control, and
obtains the information about process ordering from its user. Instrumented
versions of the processes to be debugged are started by PREMAIN using FORK.
The list of processes and input is obtained from the user at stage 0;
thereafter the lists from previous stages are used. Any message activity is
caught by PRESIGNAL. At stage N, PRESIGNAL supplies the previously recorded
or randomly generated values from other processes without invoking them,
accumulates the lists for stage N+1, and when an adequate cycle has been
completed, returns control to PREMAIN.

5. Summary

A method of step-wise debugging has been described which structures the usual
chaotic process of testing a large piece of software. The resulting test runs

9
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are ones that could have been performed without the method, but probably would
not have been. The software structure directs the selection of interface test
values in a top-down way. The method suggests a straightforward computer tool

to support the extensive bookkeeping required. . -
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